Reducing risk in basin scale sequestration: A Bayesian model selection framework for improving detection

نویسندگان

  • C. J. Seto
  • G. J. McRae
چکیده

Geological CO2 sequestration is a key technology for mitigating atmospheric greenhouse gas concentrations while providing low carbon energy. Deployment of sequestration at scales necessary for a material contribution to greenhouse gas mitigation poses a number of challenges not encountered in current operations. At the basin scale, injection sites will not be as well characterized as current operations. Predictions of system response to this magnitude of injection are expected to have greater uncertainty and risk. Through an integrated, model based design and assimilation, monitoring provides a platform for mitigating the associated risks. Because footprints of basin scale injection projects are expected to be very large, the high resolution monitoring programs in existing projects are not economically feasible for monitoring at large scales. The acceptable levels of resolution and risk are dependent on the footprint of the network and the monitoring technique employed, which are in turn, constrained by cost of deployment and regulatory requirements. Network design must make an implicit assumption on the size of the leak that is able to be measured. Leak detection at the surface is complicated by the many natural and anthropogenic sources of CO2 that can mask a leak or result in the incorrect assessment of whether a leak has occurred. In this paper, we introduce a Bayesian framework for decision support in discriminating between CO2 detected from a leak and CO2 measured from background fluctuations. For small leakage concentrations, the signal cannot be distinguished from background fluctuations. When complementary observations are jointly considered, the ability to discriminate between a leakage and background concentrations improves, and the number of samples required for confident detection decreases. Incorporation of Bayesian decision support tools into monitoring programs will assist in reducing risk in geological sequestration in a cost effective manner by providing a framework for efficient integration of complementary observations and enhancing the information content of the network. © 2010 Elsevier Ltd. All rights reserved

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering

Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...

متن کامل

Project Portfolio Risk Response Selection Using Bayesian Belief Networks

Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...

متن کامل

Risk Analysis of Operating Room Using the Fuzzy Bayesian Network Model

To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...

متن کامل

Bayesian change point estimation in Poisson-based control charts

Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...

متن کامل

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011